60 research outputs found

    Continuous client-side query evaluation over dynamic linked data

    Get PDF
    Existing solutions to query dynamic Linked Data sources extend the SPARQL language, and require continuous server processing for each query. Traditional SPARQL endpoints already accept highly expressive queries, so extending these endpoints for time-sensitive queries increases the server cost even further. To make continuous querying over dynamic Linked Data more affordable, we extend the low-cost Triple Pattern Fragments (TPF) interface with support for time-sensitive queries. In this paper, we introduce the TPF Query Streamer that allows clients to evaluate SPARQL queries with continuously updating results. Our experiments indicate that this extension significantly lowers the server complexity, at the expense of an increase in the execution time per query. We prove that by moving the complexity of continuously evaluating queries over dynamic Linked Data to the clients and thus increasing bandwidth usage, the cost at the server side is significantly reduced. Our results show that this solution makes real-time querying more scalable for a large amount of concurrent clients when compared to the alternatives

    Storing and querying evolving knowledge graphs on the web

    Get PDF

    PoDiGG

    Get PDF

    A Prospective Analysis of Security Vulnerabilities within Link Traversal-Based Query Processing (Extended Version)

    Full text link
    The societal and economical consequences surrounding Big Data-driven platforms have increased the call for decentralized solutions. However, retrieving and querying data in more decentralized environments requires fundamentally different approaches, whose properties are not yet well understood. Link Traversal-based Query Processing (LTQP) is a technique for querying over decentralized data networks, in which a client-side query engine discovers data by traversing links between documents. Since decentralized environments are potentially unsafe due to their non-centrally controlled nature, there is a need for client-side LTQP query engines to be resistant against security threats aimed at the query engine's host machine or the query initiator's personal data. As such, we have performed an analysis of potential security vulnerabilities of LTQP. This article provides an overview of security threats in related domains, which are used as inspiration for the identification of 10 LTQP security threats. Each threat is explained, together with an example, and one or more avenues for mitigations are proposed. We conclude with several concrete recommendations for LTQP query engine developers and data publishers as a first step to mitigate some of these issues. With this work, we start filling the unknowns for enabling querying over decentralized environments. Aside from future work on security, wider research is needed to uncover missing building blocks for enabling true decentralization.Comment: This is an extended version of an article with the same title published in the proceedings of the QuWeDa workshop at ISWC 2022. Next to more details in the related work and conclusions sections, this extension introduces concrete mitigations of each vulnerabilit

    Evaluation of Link Traversal Query Execution over Decentralized Environments with Structural Assumptions

    Full text link
    To counter societal and economic problems caused by data silos on the Web, efforts such as Solid strive to reclaim private data by storing it in permissioned documents over a large number of personal vaults across the Web. Building applications on top of such a decentralized Knowledge Graph involves significant technical challenges: centralized aggregation prior to query processing is excluded for legal reasons, and current federated querying techniques cannot handle this large scale of distribution at the expected performance. We propose an extension to Link Traversal Query Processing (LTQP) that incorporates structural properties within decentralized environments to tackle their unprecedented scale. In this article, we analyze the structural properties of the Solid decentralization ecosystem that are relevant for query execution, and provide the SolidBench benchmark to simulate Solid environments representatively. We introduce novel LTQP algorithms leveraging these structural properties, and evaluate their effectiveness. Our experiments indicate that these new algorithms obtain accurate results in the order of seconds for non-complex queries, which existing algorithms cannot achieve. Furthermore, we discuss limitations with respect to more complex queries. This work reveals that a traversal-based querying method using structural assumptions can be effective for large-scale decentralization, but that advances are needed in the area of query planning for LTQP to handle more complex queries. These insights open the door to query-driven decentralized applications, in which declarative queries shield developers from the inherent complexity of a decentralized landscape.Comment: Not peer-reviewe

    Exposing RDF archives using triple pattern fragments

    Get PDF
    corecore